776 lines
24 KiB
Dart
776 lines
24 KiB
Dart
import 'dart:io';
|
|
import 'dart:math' as math;
|
|
import 'package:image/image.dart' as img;
|
|
|
|
class DetectedCircle {
|
|
final double centerX;
|
|
final double centerY;
|
|
final double radius;
|
|
|
|
DetectedCircle({
|
|
required this.centerX,
|
|
required this.centerY,
|
|
required this.radius,
|
|
});
|
|
}
|
|
|
|
class DetectedImpact {
|
|
final double x;
|
|
final double y;
|
|
final double radius;
|
|
|
|
DetectedImpact({
|
|
required this.x,
|
|
required this.y,
|
|
required this.radius,
|
|
});
|
|
}
|
|
|
|
/// Image processing settings for impact detection
|
|
class ImpactDetectionSettings {
|
|
/// Threshold for dark spot detection (0-255, lower = darker)
|
|
final int darkThreshold;
|
|
|
|
/// Minimum impact size in pixels
|
|
final int minImpactSize;
|
|
|
|
/// Maximum impact size in pixels
|
|
final int maxImpactSize;
|
|
|
|
/// Blur radius for noise reduction
|
|
final int blurRadius;
|
|
|
|
/// Contrast enhancement factor
|
|
final double contrastFactor;
|
|
|
|
/// Minimum circularity (0-1, 1 = perfect circle)
|
|
/// Used to filter out non-circular shapes like numbers
|
|
final double minCircularity;
|
|
|
|
/// Maximum aspect ratio (width/height or height/width)
|
|
/// Used to filter out elongated shapes like numbers
|
|
final double maxAspectRatio;
|
|
|
|
/// Minimum fill ratio (0-1, ~0.7 for filled circle, lower for rings/hollow shapes)
|
|
/// A bullet hole is FILLED, numbers on target are hollow rings
|
|
final double minFillRatio;
|
|
|
|
const ImpactDetectionSettings({
|
|
this.darkThreshold = 80,
|
|
this.minImpactSize = 20,
|
|
this.maxImpactSize = 500,
|
|
this.blurRadius = 2,
|
|
this.contrastFactor = 1.2,
|
|
this.minCircularity = 0.6,
|
|
this.maxAspectRatio = 2.0,
|
|
this.minFillRatio = 0.5, // Filled circles should have ratio > 0.5
|
|
});
|
|
}
|
|
|
|
/// Reference impact for calibrated detection
|
|
class ReferenceImpact {
|
|
final double x; // Normalized 0-1
|
|
final double y; // Normalized 0-1
|
|
|
|
const ReferenceImpact({required this.x, required this.y});
|
|
}
|
|
|
|
/// Characteristics learned from reference impacts
|
|
class ImpactCharacteristics {
|
|
final double avgLuminance;
|
|
final double luminanceStdDev;
|
|
final double avgSize;
|
|
final double sizeStdDev;
|
|
final double avgCircularity;
|
|
final double avgFillRatio; // How filled is the blob vs its bounding circle
|
|
final double avgDarkThreshold; // The threshold used to detect the blob
|
|
|
|
const ImpactCharacteristics({
|
|
required this.avgLuminance,
|
|
required this.luminanceStdDev,
|
|
required this.avgSize,
|
|
required this.sizeStdDev,
|
|
required this.avgCircularity,
|
|
required this.avgFillRatio,
|
|
required this.avgDarkThreshold,
|
|
});
|
|
|
|
@override
|
|
String toString() {
|
|
return 'ImpactCharacteristics(lum: ${avgLuminance.toStringAsFixed(1)} ± ${luminanceStdDev.toStringAsFixed(1)}, '
|
|
'size: ${avgSize.toStringAsFixed(1)} ± ${sizeStdDev.toStringAsFixed(1)}, '
|
|
'circ: ${avgCircularity.toStringAsFixed(2)}, fill: ${avgFillRatio.toStringAsFixed(2)})';
|
|
}
|
|
}
|
|
|
|
/// Service for image processing and impact detection
|
|
class ImageProcessingService {
|
|
/// Detect the main target circle from an image
|
|
DetectedCircle? detectMainTarget(String imagePath) {
|
|
// Return center of image as target (basic implementation)
|
|
// Could be enhanced with circle detection algorithm
|
|
return DetectedCircle(
|
|
centerX: 0.5,
|
|
centerY: 0.5,
|
|
radius: 0.4,
|
|
);
|
|
}
|
|
|
|
/// Detect impacts (bullet holes) from an image file
|
|
List<DetectedImpact> detectImpacts(String imagePath) {
|
|
return detectImpactsWithSettings(
|
|
imagePath,
|
|
const ImpactDetectionSettings(),
|
|
);
|
|
}
|
|
|
|
/// Detect impacts with custom settings
|
|
List<DetectedImpact> detectImpactsWithSettings(
|
|
String imagePath,
|
|
ImpactDetectionSettings settings,
|
|
) {
|
|
try {
|
|
// Load the image
|
|
final file = File(imagePath);
|
|
final bytes = file.readAsBytesSync();
|
|
final originalImage = img.decodeImage(bytes);
|
|
|
|
if (originalImage == null) {
|
|
return [];
|
|
}
|
|
|
|
// Resize for faster processing if image is too large
|
|
img.Image image;
|
|
final maxDimension = 1000;
|
|
if (originalImage.width > maxDimension || originalImage.height > maxDimension) {
|
|
final scale = maxDimension / math.max(originalImage.width, originalImage.height);
|
|
image = img.copyResize(
|
|
originalImage,
|
|
width: (originalImage.width * scale).round(),
|
|
height: (originalImage.height * scale).round(),
|
|
);
|
|
} else {
|
|
image = originalImage;
|
|
}
|
|
|
|
// Convert to grayscale
|
|
final grayscale = img.grayscale(image);
|
|
|
|
// Apply gaussian blur to reduce noise
|
|
final blurred = img.gaussianBlur(grayscale, radius: settings.blurRadius);
|
|
|
|
// Enhance contrast
|
|
final enhanced = img.adjustColor(
|
|
blurred,
|
|
contrast: settings.contrastFactor,
|
|
);
|
|
|
|
// Detect dark spots (potential impacts)
|
|
// Filter by circularity and fill ratio to avoid detecting numbers (hollow rings)
|
|
final impacts = _detectDarkSpots(
|
|
enhanced,
|
|
settings.darkThreshold,
|
|
settings.minImpactSize,
|
|
settings.maxImpactSize,
|
|
minCircularity: settings.minCircularity,
|
|
maxAspectRatio: settings.maxAspectRatio,
|
|
minFillRatio: settings.minFillRatio,
|
|
);
|
|
|
|
// Convert to relative coordinates
|
|
final width = originalImage.width.toDouble();
|
|
final height = originalImage.height.toDouble();
|
|
|
|
return impacts.map((impact) {
|
|
return DetectedImpact(
|
|
x: impact.x / width,
|
|
y: impact.y / height,
|
|
radius: impact.radius,
|
|
);
|
|
}).toList();
|
|
} catch (e) {
|
|
print('Error detecting impacts: $e');
|
|
return [];
|
|
}
|
|
}
|
|
|
|
/// Analyze reference impacts to learn their characteristics
|
|
/// This actually finds the blob at each reference point and extracts its real properties
|
|
ImpactCharacteristics? analyzeReferenceImpacts(
|
|
String imagePath,
|
|
List<ReferenceImpact> references, {
|
|
int searchRadius = 30,
|
|
}) {
|
|
if (references.length < 2) return null;
|
|
|
|
try {
|
|
final file = File(imagePath);
|
|
final bytes = file.readAsBytesSync();
|
|
final originalImage = img.decodeImage(bytes);
|
|
if (originalImage == null) return null;
|
|
|
|
// Resize for faster processing
|
|
img.Image image;
|
|
double scale = 1.0;
|
|
final maxDimension = 1000;
|
|
if (originalImage.width > maxDimension || originalImage.height > maxDimension) {
|
|
scale = maxDimension / math.max(originalImage.width, originalImage.height);
|
|
image = img.copyResize(
|
|
originalImage,
|
|
width: (originalImage.width * scale).round(),
|
|
height: (originalImage.height * scale).round(),
|
|
);
|
|
} else {
|
|
image = originalImage;
|
|
}
|
|
|
|
final grayscale = img.grayscale(image);
|
|
final blurred = img.gaussianBlur(grayscale, radius: 2);
|
|
final width = image.width;
|
|
final height = image.height;
|
|
|
|
final luminances = <double>[];
|
|
final sizes = <double>[];
|
|
final circularities = <double>[];
|
|
final fillRatios = <double>[];
|
|
final thresholds = <double>[];
|
|
|
|
for (final ref in references) {
|
|
final centerX = (ref.x * width).round().clamp(0, width - 1);
|
|
final centerY = (ref.y * height).round().clamp(0, height - 1);
|
|
|
|
// Find the darkest point in the search area (the center of the impact)
|
|
int darkestX = centerX;
|
|
int darkestY = centerY;
|
|
double darkestLum = 255;
|
|
|
|
for (int dy = -searchRadius; dy <= searchRadius; dy++) {
|
|
for (int dx = -searchRadius; dx <= searchRadius; dx++) {
|
|
final px = centerX + dx;
|
|
final py = centerY + dy;
|
|
if (px < 0 || px >= width || py < 0 || py >= height) continue;
|
|
|
|
final pixel = blurred.getPixel(px, py);
|
|
final lum = img.getLuminance(pixel).toDouble();
|
|
if (lum < darkestLum) {
|
|
darkestLum = lum;
|
|
darkestX = px;
|
|
darkestY = py;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now find the blob at the darkest point using adaptive threshold
|
|
// Start from the darkest point and expand until we find the boundary
|
|
final blobResult = _findBlobAtPoint(blurred, darkestX, darkestY, width, height);
|
|
|
|
if (blobResult != null) {
|
|
luminances.add(blobResult.avgLuminance);
|
|
sizes.add(blobResult.size.toDouble());
|
|
circularities.add(blobResult.circularity);
|
|
fillRatios.add(blobResult.fillRatio);
|
|
thresholds.add(blobResult.threshold);
|
|
}
|
|
}
|
|
|
|
if (luminances.isEmpty) return null;
|
|
|
|
// Calculate statistics
|
|
final avgLum = luminances.reduce((a, b) => a + b) / luminances.length;
|
|
final avgSize = sizes.reduce((a, b) => a + b) / sizes.length;
|
|
final avgCirc = circularities.reduce((a, b) => a + b) / circularities.length;
|
|
final avgFill = fillRatios.reduce((a, b) => a + b) / fillRatios.length;
|
|
final avgThreshold = thresholds.reduce((a, b) => a + b) / thresholds.length;
|
|
|
|
// Calculate standard deviations
|
|
double lumVariance = 0;
|
|
double sizeVariance = 0;
|
|
for (int i = 0; i < luminances.length; i++) {
|
|
lumVariance += math.pow(luminances[i] - avgLum, 2);
|
|
sizeVariance += math.pow(sizes[i] - avgSize, 2);
|
|
}
|
|
final lumStdDev = math.sqrt(lumVariance / luminances.length);
|
|
final sizeStdDev = math.sqrt(sizeVariance / sizes.length);
|
|
|
|
return ImpactCharacteristics(
|
|
avgLuminance: avgLum,
|
|
luminanceStdDev: lumStdDev,
|
|
avgSize: avgSize,
|
|
sizeStdDev: sizeStdDev,
|
|
avgCircularity: avgCirc,
|
|
avgFillRatio: avgFill,
|
|
avgDarkThreshold: avgThreshold,
|
|
);
|
|
} catch (e) {
|
|
print('Error analyzing reference impacts: $e');
|
|
return null;
|
|
}
|
|
}
|
|
|
|
/// Find a blob at a specific point and extract its characteristics
|
|
_BlobAnalysis? _findBlobAtPoint(img.Image image, int startX, int startY, int width, int height) {
|
|
// Get the luminance at the center point
|
|
final centerPixel = image.getPixel(startX, startY);
|
|
final centerLum = img.getLuminance(centerPixel).toDouble();
|
|
|
|
// Find the threshold by looking at the luminance gradient around the point
|
|
// Sample in expanding circles to find where the blob ends
|
|
double sumLum = centerLum;
|
|
int pixelCount = 1;
|
|
double maxRadius = 0;
|
|
|
|
// Sample at different radii to find the edge
|
|
for (int r = 1; r <= 50; r++) {
|
|
double ringSum = 0;
|
|
int ringCount = 0;
|
|
|
|
// Sample points on a ring
|
|
for (int i = 0; i < 16; i++) {
|
|
final angle = (i / 16) * 2 * math.pi;
|
|
final px = startX + (r * math.cos(angle)).round();
|
|
final py = startY + (r * math.sin(angle)).round();
|
|
if (px < 0 || px >= width || py < 0 || py >= height) continue;
|
|
|
|
final pixel = image.getPixel(px, py);
|
|
final lum = img.getLuminance(pixel).toDouble();
|
|
ringSum += lum;
|
|
ringCount++;
|
|
}
|
|
|
|
if (ringCount > 0) {
|
|
final avgRingLum = ringSum / ringCount;
|
|
// If the ring is significantly brighter than the center, we've found the edge
|
|
if (avgRingLum > centerLum + 40) {
|
|
maxRadius = r.toDouble();
|
|
break;
|
|
}
|
|
sumLum += ringSum;
|
|
pixelCount += ringCount;
|
|
}
|
|
}
|
|
|
|
if (maxRadius < 3) return null; // Too small to be a valid blob
|
|
|
|
// Calculate threshold as the midpoint between center and edge luminance
|
|
final edgeRadius = (maxRadius * 1.2).round();
|
|
double edgeLum = 0;
|
|
int edgeCount = 0;
|
|
for (int i = 0; i < 16; i++) {
|
|
final angle = (i / 16) * 2 * math.pi;
|
|
final px = startX + (edgeRadius * math.cos(angle)).round();
|
|
final py = startY + (edgeRadius * math.sin(angle)).round();
|
|
if (px < 0 || px >= width || py < 0 || py >= height) continue;
|
|
final pixel = image.getPixel(px, py);
|
|
edgeLum += img.getLuminance(pixel).toDouble();
|
|
edgeCount++;
|
|
}
|
|
if (edgeCount > 0) {
|
|
edgeLum /= edgeCount;
|
|
}
|
|
|
|
final threshold = ((centerLum + edgeLum) / 2).round();
|
|
|
|
// Now do a flood fill with this threshold to get the actual blob
|
|
final mask = List.generate(height, (_) => List.filled(width, false));
|
|
for (int y = 0; y < height; y++) {
|
|
for (int x = 0; x < width; x++) {
|
|
final pixel = image.getPixel(x, y);
|
|
final lum = img.getLuminance(pixel);
|
|
mask[y][x] = lum < threshold;
|
|
}
|
|
}
|
|
|
|
final visited = List.generate(height, (_) => List.filled(width, false));
|
|
|
|
// Find the blob containing the start point
|
|
if (!mask[startY][startX]) {
|
|
// Start point might not be in mask, find nearest point that is
|
|
for (int r = 1; r <= 10; r++) {
|
|
bool found = false;
|
|
for (int dy = -r; dy <= r && !found; dy++) {
|
|
for (int dx = -r; dx <= r && !found; dx++) {
|
|
final px = startX + dx;
|
|
final py = startY + dy;
|
|
if (px >= 0 && px < width && py >= 0 && py < height && mask[py][px]) {
|
|
final blob = _floodFill(mask, visited, px, py, width, height);
|
|
|
|
// Calculate fill ratio: actual pixels / bounding circle area
|
|
final boundingRadius = math.max(blob.radius, 1);
|
|
final boundingCircleArea = math.pi * boundingRadius * boundingRadius;
|
|
final fillRatio = (blob.size / boundingCircleArea).clamp(0.0, 1.0);
|
|
|
|
return _BlobAnalysis(
|
|
avgLuminance: sumLum / pixelCount,
|
|
size: blob.size,
|
|
circularity: blob.circularity,
|
|
fillRatio: fillRatio,
|
|
threshold: threshold.toDouble(),
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
final blob = _floodFill(mask, visited, startX, startY, width, height);
|
|
|
|
// Calculate fill ratio
|
|
final boundingRadius = math.max(blob.radius, 1);
|
|
final boundingCircleArea = math.pi * boundingRadius * boundingRadius;
|
|
final fillRatio = (blob.size / boundingCircleArea).clamp(0.0, 1.0);
|
|
|
|
return _BlobAnalysis(
|
|
avgLuminance: sumLum / pixelCount,
|
|
size: blob.size,
|
|
circularity: blob.circularity,
|
|
fillRatio: fillRatio,
|
|
threshold: threshold.toDouble(),
|
|
);
|
|
}
|
|
|
|
/// Detect impacts based on reference characteristics with tolerance
|
|
List<DetectedImpact> detectImpactsFromReferences(
|
|
String imagePath,
|
|
ImpactCharacteristics characteristics, {
|
|
double tolerance = 2.0, // Number of standard deviations
|
|
double minCircularity = 0.4,
|
|
}) {
|
|
try {
|
|
final file = File(imagePath);
|
|
final bytes = file.readAsBytesSync();
|
|
final originalImage = img.decodeImage(bytes);
|
|
if (originalImage == null) return [];
|
|
|
|
// Resize for faster processing
|
|
img.Image image;
|
|
double scale = 1.0;
|
|
final maxDimension = 1000;
|
|
if (originalImage.width > maxDimension || originalImage.height > maxDimension) {
|
|
scale = maxDimension / math.max(originalImage.width, originalImage.height);
|
|
image = img.copyResize(
|
|
originalImage,
|
|
width: (originalImage.width * scale).round(),
|
|
height: (originalImage.height * scale).round(),
|
|
);
|
|
} else {
|
|
image = originalImage;
|
|
}
|
|
|
|
final grayscale = img.grayscale(image);
|
|
final blurred = img.gaussianBlur(grayscale, radius: 2);
|
|
|
|
// Use the threshold learned from references
|
|
final threshold = characteristics.avgDarkThreshold.round();
|
|
|
|
// Calculate size range based on learned characteristics
|
|
final minSize = (characteristics.avgSize / (tolerance * 2)).clamp(5, 10000).round();
|
|
final maxSize = (characteristics.avgSize * tolerance * 2).clamp(10, 10000).round();
|
|
|
|
// Calculate minimum fill ratio based on learned characteristics
|
|
// Allow some variance but still filter out hollow shapes
|
|
final minFillRatio = (characteristics.avgFillRatio - 0.2).clamp(0.3, 0.9);
|
|
|
|
// Detect blobs using the learned threshold
|
|
final impacts = _detectDarkSpots(
|
|
blurred,
|
|
threshold,
|
|
minSize,
|
|
maxSize,
|
|
minCircularity: math.max(characteristics.avgCircularity - 0.2, minCircularity),
|
|
minFillRatio: minFillRatio,
|
|
);
|
|
|
|
// Convert to relative coordinates
|
|
final width = originalImage.width.toDouble();
|
|
final height = originalImage.height.toDouble();
|
|
|
|
return impacts.map((impact) {
|
|
return DetectedImpact(
|
|
x: impact.x / image.width,
|
|
y: impact.y / image.height,
|
|
radius: impact.radius / scale,
|
|
);
|
|
}).toList();
|
|
} catch (e) {
|
|
print('Error detecting impacts from references: $e');
|
|
return [];
|
|
}
|
|
}
|
|
|
|
/// Detect dark spots with adaptive luminance range
|
|
List<_Blob> _detectDarkSpotsAdaptive(
|
|
img.Image image,
|
|
int minLuminance,
|
|
int maxLuminance,
|
|
int minSize,
|
|
int maxSize, {
|
|
double minCircularity = 0.5,
|
|
double minFillRatio = 0.5,
|
|
}) {
|
|
final width = image.width;
|
|
final height = image.height;
|
|
|
|
// Create binary mask of pixels within luminance range
|
|
final mask = List.generate(height, (_) => List.filled(width, false));
|
|
|
|
for (int y = 0; y < height; y++) {
|
|
for (int x = 0; x < width; x++) {
|
|
final pixel = image.getPixel(x, y);
|
|
final luminance = img.getLuminance(pixel);
|
|
mask[y][x] = luminance >= minLuminance && luminance <= maxLuminance;
|
|
}
|
|
}
|
|
|
|
// Find connected components
|
|
final visited = List.generate(height, (_) => List.filled(width, false));
|
|
final blobs = <_Blob>[];
|
|
|
|
for (int y = 0; y < height; y++) {
|
|
for (int x = 0; x < width; x++) {
|
|
if (mask[y][x] && !visited[y][x]) {
|
|
final blob = _floodFill(mask, visited, x, y, width, height);
|
|
if (blob.size >= minSize &&
|
|
blob.size <= maxSize &&
|
|
blob.circularity >= minCircularity &&
|
|
blob.fillRatio >= minFillRatio) {
|
|
blobs.add(blob);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return _filterOverlappingBlobs(blobs);
|
|
}
|
|
|
|
/// Detect dark spots in a grayscale image using blob detection
|
|
List<_Blob> _detectDarkSpots(
|
|
img.Image image,
|
|
int threshold,
|
|
int minSize,
|
|
int maxSize, {
|
|
double minCircularity = 0.6,
|
|
double maxAspectRatio = 2.0,
|
|
double minFillRatio = 0.5,
|
|
}) {
|
|
final width = image.width;
|
|
final height = image.height;
|
|
|
|
// Create binary mask of dark pixels
|
|
final mask = List.generate(height, (_) => List.filled(width, false));
|
|
|
|
for (int y = 0; y < height; y++) {
|
|
for (int x = 0; x < width; x++) {
|
|
final pixel = image.getPixel(x, y);
|
|
final luminance = img.getLuminance(pixel);
|
|
mask[y][x] = luminance < threshold;
|
|
}
|
|
}
|
|
|
|
// Find connected components (blobs)
|
|
final visited = List.generate(height, (_) => List.filled(width, false));
|
|
final blobs = <_Blob>[];
|
|
|
|
for (int y = 0; y < height; y++) {
|
|
for (int x = 0; x < width; x++) {
|
|
if (mask[y][x] && !visited[y][x]) {
|
|
final blob = _floodFill(mask, visited, x, y, width, height);
|
|
|
|
// Filter by size
|
|
if (blob.size < minSize || blob.size > maxSize) continue;
|
|
|
|
// Filter by circularity (reject non-circular shapes like numbers)
|
|
if (blob.circularity < minCircularity) continue;
|
|
|
|
// Filter by aspect ratio (reject elongated shapes)
|
|
if (blob.aspectRatio > maxAspectRatio) continue;
|
|
|
|
// Filter by fill ratio (reject hollow rings - numbers on target)
|
|
// A filled bullet hole should have fill ratio > 0.5
|
|
// A hollow ring (like number "0" or "8") has a much lower fill ratio
|
|
if (blob.fillRatio < minFillRatio) continue;
|
|
|
|
blobs.add(blob);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Filter overlapping blobs (keep larger ones)
|
|
final filteredBlobs = _filterOverlappingBlobs(blobs);
|
|
|
|
return filteredBlobs;
|
|
}
|
|
|
|
/// Flood fill to find connected component
|
|
_Blob _floodFill(
|
|
List<List<bool>> mask,
|
|
List<List<bool>> visited,
|
|
int startX,
|
|
int startY,
|
|
int width,
|
|
int height,
|
|
) {
|
|
final stack = <_Point>[_Point(startX, startY)];
|
|
final points = <_Point>[];
|
|
|
|
int minX = startX, maxX = startX;
|
|
int minY = startY, maxY = startY;
|
|
int perimeterCount = 0;
|
|
|
|
while (stack.isNotEmpty) {
|
|
final point = stack.removeLast();
|
|
final x = point.x;
|
|
final y = point.y;
|
|
|
|
if (x < 0 || x >= width || y < 0 || y >= height) continue;
|
|
if (visited[y][x] || !mask[y][x]) continue;
|
|
|
|
visited[y][x] = true;
|
|
points.add(point);
|
|
|
|
minX = math.min(minX, x);
|
|
maxX = math.max(maxX, x);
|
|
minY = math.min(minY, y);
|
|
maxY = math.max(maxY, y);
|
|
|
|
// Check if this is a perimeter pixel (has at least one non-blob neighbor)
|
|
bool isPerimeter = false;
|
|
for (final delta in [[-1, 0], [1, 0], [0, -1], [0, 1]]) {
|
|
final nx = x + delta[0];
|
|
final ny = y + delta[1];
|
|
if (nx < 0 || nx >= width || ny < 0 || ny >= height || !mask[ny][nx]) {
|
|
isPerimeter = true;
|
|
break;
|
|
}
|
|
}
|
|
if (isPerimeter) perimeterCount++;
|
|
|
|
// Add neighbors (4-connectivity)
|
|
stack.add(_Point(x + 1, y));
|
|
stack.add(_Point(x - 1, y));
|
|
stack.add(_Point(x, y + 1));
|
|
stack.add(_Point(x, y - 1));
|
|
}
|
|
|
|
// Calculate centroid
|
|
double sumX = 0, sumY = 0;
|
|
for (final p in points) {
|
|
sumX += p.x;
|
|
sumY += p.y;
|
|
}
|
|
|
|
final centerX = points.isNotEmpty ? sumX / points.length : startX.toDouble();
|
|
final centerY = points.isNotEmpty ? sumY / points.length : startY.toDouble();
|
|
|
|
// Calculate bounding box dimensions
|
|
final blobWidth = (maxX - minX + 1).toDouble();
|
|
final blobHeight = (maxY - minY + 1).toDouble();
|
|
|
|
// Calculate approximate radius based on bounding box
|
|
final radius = math.max(blobWidth, blobHeight) / 2.0;
|
|
|
|
// Calculate circularity: 4 * pi * area / perimeter^2
|
|
// For a perfect circle, this equals 1
|
|
final area = points.length.toDouble();
|
|
final perimeter = perimeterCount.toDouble();
|
|
final circularity = perimeter > 0
|
|
? (4 * math.pi * area) / (perimeter * perimeter)
|
|
: 0.0;
|
|
|
|
// Calculate aspect ratio (always >= 1)
|
|
final aspectRatio = blobWidth > blobHeight
|
|
? blobWidth / blobHeight
|
|
: blobHeight / blobWidth;
|
|
|
|
// Calculate fill ratio: actual area vs bounding circle area
|
|
// A filled circle has fill ratio ~0.78 (pi/4), a ring/hollow circle has much lower
|
|
final boundingCircleArea = math.pi * radius * radius;
|
|
final fillRatio = boundingCircleArea > 0 ? (area / boundingCircleArea).clamp(0.0, 1.0) : 0.0;
|
|
|
|
return _Blob(
|
|
x: centerX,
|
|
y: centerY,
|
|
radius: radius,
|
|
size: points.length,
|
|
circularity: circularity.clamp(0.0, 1.0),
|
|
aspectRatio: aspectRatio,
|
|
fillRatio: fillRatio,
|
|
);
|
|
}
|
|
|
|
/// Filter overlapping blobs, keeping the larger ones
|
|
List<_Blob> _filterOverlappingBlobs(List<_Blob> blobs) {
|
|
if (blobs.isEmpty) return [];
|
|
|
|
// Sort by size (largest first)
|
|
blobs.sort((a, b) => b.size.compareTo(a.size));
|
|
|
|
final filtered = <_Blob>[];
|
|
|
|
for (final blob in blobs) {
|
|
bool overlaps = false;
|
|
|
|
for (final existing in filtered) {
|
|
final dx = blob.x - existing.x;
|
|
final dy = blob.y - existing.y;
|
|
final distance = math.sqrt(dx * dx + dy * dy);
|
|
|
|
// Check if blobs overlap
|
|
if (distance < (blob.radius + existing.radius) * 0.8) {
|
|
overlaps = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!overlaps) {
|
|
filtered.add(blob);
|
|
}
|
|
}
|
|
|
|
return filtered;
|
|
}
|
|
}
|
|
|
|
class _Point {
|
|
final int x;
|
|
final int y;
|
|
|
|
_Point(this.x, this.y);
|
|
}
|
|
|
|
class _Blob {
|
|
final double x;
|
|
final double y;
|
|
final double radius;
|
|
final int size;
|
|
final double circularity; // 0-1, 1 = perfect circle
|
|
final double aspectRatio; // width/height ratio
|
|
final double fillRatio; // How filled vs hollow the blob is
|
|
|
|
_Blob({
|
|
required this.x,
|
|
required this.y,
|
|
required this.radius,
|
|
required this.size,
|
|
required this.circularity,
|
|
required this.aspectRatio,
|
|
this.fillRatio = 1.0,
|
|
});
|
|
}
|
|
|
|
class _BlobAnalysis {
|
|
final double avgLuminance;
|
|
final int size;
|
|
final double circularity;
|
|
final double fillRatio;
|
|
final double threshold;
|
|
|
|
_BlobAnalysis({
|
|
required this.avgLuminance,
|
|
required this.size,
|
|
required this.circularity,
|
|
required this.fillRatio,
|
|
required this.threshold,
|
|
});
|
|
}
|